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This paper examines a switching LPV control approach to determine if it is practical
to use for flight control designs within a wide angle of attack region. The approach is
based on multiple parameter-dependent Lyapunov functions. The full parameter space
is partitioned into overlapping subspaces and a family of LPV controllers are designed,
each suitable for a specific parameter subspace. The hysteresis switching logic is used to
accomplish the transition among different parameter subspaces. The proposed switching
LPV control scheme is applied to an F-16 aircraft model with different actuator dynamics
in low and high angle of attack regions. The nonlinear simulation results show that the
aircraft performs well when switching among different angle of attack regions.

I. Introduction

In flight control, different performance goals are desirable for different angle of attack regions. For example,
in a low angle of attack scenario, pilots desire fast and accurate responses for maneuvering and attitude

tracking, whereas in a high angle of attack region, the flight control emphasis lies in the maintainability of
aircraft stability with acceptable flying qualities. A modern fighter aircraft usually works in a wide angle
of attack region, even near stall or in the post-stall regime. In such a case, it is difficult to design a single
robust controller for the entire flight envelope. Typically, the controller is designed in such a way that the
performance is compromised in some angle of attack region.

Another issue encountered in flight control is that the actuator dynamics may be different in low and high
angle attack regions. It is known that the redundant control effectors, such as thrust vectoring nozzles, are
usually incorporated in the high angle of attack region to provide the additional control power. The usual
way to generate the thrust vectoring command is a two-step procedure. A controller is designed first based
on the generalized control, and the real control inputs are then generated using a control selector.1–4 It has
not been clearly addressed on how to develop the control law with guaranteed stability and performance by
considering the aerodynamic force and thrust force in a unified frame.

To avoid those problems, a method of articulating among multiple controllers according to the evolution
of angle of attack was incorporated. The research utilized a switching LPV control technique5 to design a
family of controllers, each suitable in different angle of attack regions, and switch among them according to
the evolution of angle of attack. The whole framework is based on LPV systems because of their relevance
to nonlinear systems. The proposed switching LPV control technique is the generalization of results in
switched LTI systems. Obviously, stability is an important and challenging problem in switched systems,
and it has received considerable attention in recent literature, Refs. 6–8. For a family of stable LTI systems,
the existence of a common Lyapunov function provides sufficient conditions for stability of switched systems
under arbitrary switching sequences.8,9 However, this kind of stability guarantee is deemed too conservative
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where a particular switching logic is concerned. For a restricted class of switching signals, multiple Lyapunov
functions have proven very useful in stability analysis. Specifically, non traditional stability conditions
have been developed using either piecewise continuous Lyapunov functions10–13 or discontinuous Lyapunov
functions.14,15 In the former case, the values of Lyapunov functions corresponding to the active subsystems
form a decreasing sequence. This constraint is relaxed in the latter case by requiring each Lyapunov function
Vp to decrease when the pth subsystem is active. The results of switched LTI systems have been generalized
to the analysis and control of switched LPV systems,16 which is further extended in Ref. 17 by introducing
average dwell time switch logic.18 The stability of switched LPV systems was analyzed by multiple parameter-
dependent Lyapunov functions, which are allowed to be discontinuous at the switching surfaces. Recently,
the authors have developed switching LPV control techniques under hysteresis switching logic and average
dwell time switching logic.5

In this research, multiple parameter-dependent Lyapunov functions,17 which are similar to multiple
Lyapunov functions in switched LTI systems,10,11,13,14 are used for analyzing the stability of switched LPV
systems. We are also interested in controlled performance, which is another major issue and has not been
addressed adequately in most current work. In this research, the performance in each angle of attack region
is determined, and an upper bound of the performance over the entire angle of attack region is derived. The
angle of attack is taken as one of the scheduling parameters, and therefore the switching event is parameter-
dependent. For LPV systems, it is conceivable that parameter-dependent switching is more practical than
state-dependent or time-dependent switching, both of which are usually encountered in switched LTI systems.
The full parameter space is partitioned into overlapping subspaces, and hysteresis switching logic7,19 is used
to accomplish the transition from one angle of attack region to another.

The notation is standard. R stands for the set of real numbers and R+ for the non-negative real numbers.
Rm×n is the set of real m × n matrices. The transpose of a real matrix M is denoted by MT . Ker(M)
is used to denote the orthogonal complement of M . We use Sn×n to denote the real symmetric n × n
matrices and Sn×n

+ to denote positive-definite matrices. If M ∈ Sn×n, then M > 0 (M ≥ 0) indicates
that M is positive-definite (positive semidefinite) and M < 0 (M ≤ 0) denotes a negative-definite (negative
semidefinite) matrix. For two sets A and B, the set of {x : x ∈ A, but x 6∈ B} is denoted as A − B. For
x ∈ Rn, its norm is defined as ‖x‖ := (xT x)

1
2 . The space of square integrable functions is denoted by L2,

that is, for any u ∈ L2, ‖u‖2 :=
[∫∞

0
uT (t)u(t)dt

] 1
2 is finite.

II. Switched LPV Control Synthesis with Hysteresis Switching

Consider a generalized open-loop LPV system as a function of the parameter ρ. It is assumed that ρ is in a
compact set P ⊂ Rs with its parameter variation rate bounded by νk ≤ ρ̇k ≤ νk, k = 1, 2, . . . , s. The param-
eter value is assumed measurable in real-time. For notational purposes, we denote V = {ν : νk ≤ νk ≤ ν̄k,
k = 1, 2, . . . , s}, where V is a given convex polytope in Rs that contains the origin. Suppose that the pa-
rameter set P is compact and partitioned into a finite number of closed subsets {Pi}i∈ZN

by means of a
family of switching surfaces where the index set ZN = {1, 2, . . . , N}. In each parameter subset, the dynamic
behavior of the system is governed by the equation




ẋ

e

y


 =




Ai(ρ) B1,i(ρ) B2,i(ρ)
C1,i(ρ) D11,i(ρ) D12,i(ρ)
C2,i(ρ) D21,i(ρ) D22,i(ρ)







x

d

u


 , i ∈ ZN (1)

where the plant state x ∈ Rn. e ∈ Rne is the controlled output, and d ∈ Rnd is the disturbance input.
u ∈ Rnu is the control input, and y ∈ Rny is the measurement for control. All of the state-space data are
continuous functions of the parameter ρ. Note that each LPV model should have the same number of states,
and the reason will be seen in the sequel. It is also assumed that

(A1) (Ai(ρ), B2,i(ρ), C2,i(ρ)) triple is parameter-dependent stabilizable and detectable for all ρ.

(A2) The matrix functions [BT
2,i(ρ) DT

12,i(ρ)] and [C2,i(ρ) D21,i(ρ)] have full row ranks for all ρ ∈ P.

(A3) D11,i(ρ) = 0 and D22,i(ρ) = 0.

Given the open-loop LPV system (1), it is sometimes hard to find one LPV controller working for the
entire parameter region based on a single Lyapunov function (quadratic or parameter-dependent). This is
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due to different design objectives and actuator dynamics in different parameter regions. Switching LPV
control technique permits using most suitable controllers in different parameter subsets. It will also improve
performance and enhance design flexibility. In this paper, we are interested in the problem of designing a
family of LPV controllers in the form of

[
ẋk

u

]
=

[
Ak,i(ρ, ρ̇) Bk,i(ρ)
Ck,i(ρ) Dk,i(ρ)

][
xk

y

]
, i ∈ ZN (2)

each suitable for a specific parameter subset Pi, and P =
⋃Pi. Dimension of the controller state is xk ∈ Rnk .

Each controller stabilizes the open-loop system with the best achievable performance in a specific parameter
region, while maintaining the stability of the closed-loop system under the given switching logic.

When hysteresis switching logic is employed, it is assumed that any two adjacent parameter subsets are
overlapped, as shown in figure 1(a). Thus there are two switching surfaces between two adjacent parameter
subsets. We use Sij to denote the switching surface specifying the one-directional move from subset Pi to
Pj .

Sij

Pi

Pj

Sji

t1

t2

t3

(a) Hysteresis switching region

t

i

j

0 t1 i
t3t2 jji

(b) Switching signal

Figure 1. Hysteresis switching region and switching signal σ.

The switching events occur when the parameter trajectory hits one of the switching surfaces, Sij or Sji.
The evolution of the switching signal σ is described as follows: Let σ(0) = i if ρ(0) ∈ Pi. For each t > 0, if
σ(t−) = i and ρ(t) ∈ Pi, keep σ(t) = i. On the other hand, if σ(t−) = i but ρ(t) ∈ Pj − Pi, i.e., hitting the
switching surface Sij , let σ(t) = j. Repeating this procedure, we generate a piecewise constant signal σ that
is continuous from the right, as shown in figure 1(b). Because σ changes its value only after the continuous
trajectory has passed through the intersection of adjacent subsets Pi and Pj , chattering is avoided. Also,
we assume that only a finite number of switches will happen in any finite time interval.

Under switching LPV control, the closed-loop LPV system can be described by
[
ẋcl

e

]
=

[
Acl,σ(ρ, ρ̇) Bcl,σ(ρ)
Ccl,σ(ρ) Dcl,σ(ρ)

] [
xcl

d

]
(3)

where xcl ∈ Rn+nk and

[
Acl,σ(ρ, ρ̇) Bcl,σ(ρ)
Ccl,σ(ρ) Dcl,σ(ρ)

]
=




Aσ(ρ) 0 B1,σ(ρ)
0 0 0

C1,σ(ρ) 0 D11,σ(ρ)




+




0 B2,σ(ρ)
I 0
0 D12,σ(ρ)




[
Ak,σ(ρ, ρ̇) Bk,σ(ρ)
Ck,σ(ρ) Dk,σ(ρ)

][
0 I 0

C2,σ(ρ) 0 D21,σ(ρ)

]
(4)

A discontinuous Lyapunov function consisting of multiple parameter-dependent Lyapunov functions is
used for stability analysis and control design of switched LPV systems. If there exist a family of positive-
definite matrix functions {Xi(ρ)}i∈ZN

, each is smooth over the corresponding parameter subset Pi. The
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multiple parameter-dependent Lyapunov functions can then be defined as

Vσ(x, ρ) = xT Xσ(ρ)x (5)

where the value of switching signal σ represents the active operating region Pi and thus determines the
matrix function Xi(ρ).

For the closed-loop system (3) under the hysteresis switching logic, if on the switching surface Sij we
have

Xi(ρ) ≥ Xj(ρ) (6)

i.e. the Lyapunov function of the closed-loop system (3) does not increase when switching from Pi to Pj .
Then we have Vi(xcl, ρ) ≥ Vj(xcl, ρ) and the jth controller can be activated safely. Similarly, when switching
from Pj back to Pi, the condition Xj(ρ) ≥ Xi(ρ) is required on the switching surface Sji due to the hysteresis
effect. Moreover, if the performance is defined as the induced L2 norm of the closed-loop system, the stability
and performance of LPV control over each parameter subregion is ensured by20




AT
cl,i(ρ)Xi(ρ) + Xi(ρ)Acl,i(ρ) +

s∑

k=1

{νk, νk} ∂Xi

∂ρk
Xi(ρ)Bcl,i(ρ) CT

cl,i(ρ)

BT
cl,i(ρ)Xi(ρ) −γiInd

DT
cl,i(ρ)

Ccl,i(ρ) Dcl,i(ρ) −γiIne


 < 0 (7)

where the closed-loop state-space data are described as in (4). The synthesis condition of switched LPV
control with hysteresis switching is given in the following theorem.

Theorem 1 Given an open-loop LPV system (1), the parameter set P and its overlapped partition {Pi}i∈ZN
,

if one of the following equivalent conditions is satisfied:

1. positive-definite matrix functions Ri, Si : Rs → Sn×n
+ , i ∈ ZN exist such that for any ρ ∈ Pi,

N T
R,i(ρ)




Ri(ρ)AT
i (ρ) + Ai(ρ)Ri(ρ)−

s∑

k=1

{νk, νk} ∂Ri

∂ρk
Ri(ρ)CT

1,i(ρ) B1,i(ρ)

C1,i(ρ)Ri(ρ) −γiIne 0
BT

1,i(ρ) 0 −γiInd


NR,i(ρ) < 0 (8)

N T
S,i(ρ)




AT
i (ρ)Si(ρ) + Si(ρ)Ai(ρ) +

s∑

k=1

{νk, νk} ∂Si

∂ρk
Si(ρ)B1,i(ρ) CT

1,i(ρ)

BT
1,i(ρ)Si(ρ) −γiInd

0
C1,i(ρ) 0 −γiIne


NS,i(ρ) < 0 (9)

[
Ri(ρ) In

In Si(ρ)

]
≥ 0 (10)

where NR,i(ρ) = Ker
[
BT

2,i(ρ) DT
12,i(ρ) 0

]
and NS,i(ρ) = Ker

[
C2,i(ρ) D21,i(ρ) 0

]
, and for any

ρ ∈ Sij,

Ri(ρ) ≤ Rj(ρ) (11)

Si(ρ)−R−1
i (ρ) ≥ Sj(ρ)−R−1

j (ρ) (12)

2. the inequalities (8)–(10) hold and for any ρ ∈ Sij,

Si(ρ) ≥ Sj(ρ) (13)

Ri(ρ)− S−1
i (ρ) ≤ Rj(ρ)− S−1

j (ρ) (14)

then the closed-loop LPV system (3) is exponentially stabilized by switched LPV controllers in the entire
parameter set P, and its performance is maintained as ‖e‖2 < γ‖d‖2 with γ = max {γi}i∈ZN

.
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Proof of the above theorem can be found in Ref. 5. Note that the term R−1
i (ρ) appears in condition (12),

so the synthesis condition for switching LPV controllers is generally nonconvex. The nonconvex switching
LPV synthesis condition is difficult to solve; however, if one enforces the matrix variables Ri(ρ) to be
continuous on the switching surfaces, then for any ρ ∈ Sij ,

Ri(ρ) = Rj(ρ) (15)
Si(ρ) ≥ Sj(ρ) (16)

This implies that the dynamic controller on each switching surface has a same state-feedback gain. The
equality constraint (15) can be converted into an LMI condition through a relaxation process

−εI < Ri(ρ)−Rj(ρ) < εI (17)

where ε is a small positive number. Thus the hysteresis switching LPV synthesis conditions become convex
and can be solved using efficient LMI optimization algorithms. Similarly, nonconvex condition (13)–(14)
can be made convex by enforcing Si(ρ) = Sj(ρ) and Ri(ρ) ≤ Rj(ρ) on the switching surface Sij . This
corresponds to switching LPV controllers with the same state-estimation gain at switching surfaces.

After solving matrix functions Ri(ρ), Si(ρ), the gains of switched LPV controllers can be constructed
using the following formula:21

Ak,i(ρ, ρ̇) = −N−1
i (ρ)

{
AT (ρ)− Si(ρ)

dRi

dt
−Ni(ρ)

dMT
i

dt

+Si(ρ) [A(ρ) + B2(ρ)Fi(ρ) + Li(ρ)C2(ρ)] Ri(ρ) +
1
γi

Si(ρ) [B1(ρ) + Li(ρ)D21(ρ)] BT
1 (ρ)

+
1
γi

CT
1 (ρ) [C1(ρ) + D12(ρ)Fi(ρ)] Ri(ρ)

}
M−T

i (ρ) (18)

Bk,i(ρ) = N−1
i (ρ)Si(ρ)Li(ρ) (19)

Ck,i(ρ) = Fi(ρ)Ri(ρ)M−T
i (ρ) (20)

Dk,i(ρ) = 0 (21)

where the matrix functions Fi(ρ) and Li(ρ) are defined as

Fi(ρ) = − (
DT

12(ρ)D12(ρ)
)−1 [

γiB
T
2 (ρ)R−1

i (ρ) + DT
12(ρ)C1(ρ)

]

Li(ρ) = − [
γiS

−1
i (ρ)CT

2 (ρ) + B1(ρ)DT
21(ρ)

] (
D21(ρ)DT

21(ρ)
)−1

However, to comply with hysteresis switching logic, we need to choose particular realizations of LPV
controllers with Mi(ρ) = Ri(ρ) and Ni(ρ) = R−1

i (ρ) − Si(ρ) corresponding to the second set of synthesis
conditions (or the controller realization with Mi(ρ) = S−1

i (ρ) − Ri(ρ) and Ni(ρ) = Si(ρ) corresponding to
the third set of synthesis conditions).

III. Flight Control Example

The system to be controlled is the longitudinal F-16 aircraft model based on NASA Langley Research
Center (LaRC) wind tunnel tests,22 which is described by Stevens and Lewis in great detail.23 In our
research, a simple thrust vectoring model is added in the high angle of attack region to provide additional
longitudinal axis control power.

A. Longitudinal Model of F-16 Aircraft with Thrust Vectoring

The states used to describe motion of the aircraft in longitudinal axis over an entire operating envelope are
as follows: V (ft/s) is the total aircraft velocity, α (deg) is the angle of attack, q (deg/s) is the pitch rate,
and θ (deg) is the pitch angle. For the original aircraft model, the available control inputs are the throttle
setting δth and the elevator angle δe (deg). The resulting nonlinear equations of motion in longitudinal axis
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are given as follows:

V̇ =
1
m

(Fx cos α + Fz sin α) (22)

α̇ =
1

mV
(−Fx sin α + Fz cosα) + q (23)

q̇ =
My

Iy
(24)

θ̇ =q (25)

where m is the aircraft mass, Fx and Fz are the force components along x and z body axes respectively,
Iy is the moment of inertia about the y body axis, and My is the pitching moment. Note that the throttle
setting indirectly affects the states through the power output from the engine. Therefore, the actual power
level is also considered as a state variable in longitudinal dynamics, and the detailed dynamical model of the
engine can be referred in the NASA data. In addition, V , q, and flight path angle γ(= θ − α) are selected
as outputs.

The x and z axes forces and pitching moment in Eqs. (22)-(25) contain aerodynamic, gravitational, and
thrust components.

Fx =qSCx,t −mg sin θ + Tx (26)
Fz =qSCz,t + mg cos θ + Tz (27)

My =qScCm,t + MT (28)

where q is the dynamic pressure, S is the wing surface area, and c is the wing mean aerodynamic chord. A
complete description of the total coefficients Cx,t, Cz,t, and Cm,t can be found in Ref. 22, which also gives
the aerodynamic data in tabular form.

c.g.
T

(a) Original aircraft model

lT

Tx

Tz
T

ptvc.g.

(b) Aircraft model augmented with thrust vectoring

Figure 2. Aircraft model with and without thrust vectoring.

The F-16 is powered by an after-burning turbofan jet engine, which produces a thrust force in the x
axis, as shown in figure 2(a). In this research, the F-16 aircraft is augmented with a simple thrust vectoring
model, which is similar to that in Ref. 2. Denote the thrust vector angle by δptv, as shown in figure 2(b).
Then the thrust components along the x, z axes and the pitching moment due to thrust vector are given by

Tx = T cos δptv (29)
Tz = −T sin δptv (30)

MT = −lT T sin δptv (31)

where lT is the moment arm from the center of gravity to the thrust application point. A more complicated
model of thrust vectoring can be found in Refs. 24 and 25, but will not be used in our study.

To develop an LPV representation of the nonlinear F-16 model, we first need to find the wings-level
equilibrium points at several flight conditions in the design envelope. The local linear models are then
obtained by linearizing the nonlinear equations of motion at those points. The flight envelope of interest
covers aircraft speeds between 160 ft/s and 200 ft/s and angles of attack between 20◦ and 45◦. These two
variables are used as scheduling parameters in the LPV modeling of F-16 longitudinal dynamics. The points
at which the nonlinear model is linearized are marked by a “×” symbol in figure 3.

To apply the switching LPV control synthesis technique, the flight envelope is partitioned into two
subregions, and the striped area in figure 3 is the overlapped parameter region. In this research, two different
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Figure 3. Flight conditions and partitioned flight envelop used for switched LPV model.

sets of actuators are used in the different angle of attack regions. The actuators used in the low angle of
attack region (20◦ ≤ α ≤ 35◦) are the throttle and the elevator, and the thrust vectoring nozzle is inactive.
The local linear models in this region are based on the original aircraft model, which is corresponding to
the case of δptv = 0. In the high angle of attack region (30◦ ≤ α ≤ 45◦), the thrust vectoring nozzle is
incorporated to provide additional force and moment. Therefore, the switching considered in this research
is based on the trajectory of the angle of attack, i.e., the controller is switched only when the aircraft flies
from one angle of attack region to another.

B. Control Problem Setup

The design objective is to track the flight path angle command with the tracking error at about 1.25% of the
command in the steady state. The control design is formulated as a model-following problem where the ideal
model to be followed is chosen as a second-order filter based on desired flying qualities. A block diagram of
the system interconnection for synthesizing the switched LPV controllers is shown in figure 4, where P is
the model set of linearized aircraft dynamics at different trim points and the signal n is a three-dimensional
sensor noise.

P

pW

nW

idealW

V
q

pe

}3{ny

cmd

_

u

uW

cmd

ptv

ue
actW

ptv

ptv

e

e

cmd

e

cmd

th

uW

cmd

th

cmd

e
ue actW

th

th

e

e

high angle of attack region

low angle of attack region

th

Figure 4. Weighted open-loop interconnection for the F-16 aircraft.

It is noted that the different actuator sets are used in different parameter subspaces. The dynamics of
the actuators are modeled as first-order lag filters, and the time constants can be found in Refs. 22 and 2.

δth

δcmd
th

=
1

0.2s + 1
,

δptv

δcmd
ptv

=
1

0.07s + 1
,

δe

δcmd
e

=
1

0.05s + 1
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In the low angle of attack region, the control inputs are throttle position δth and elevator angle δe. Both
the positions and the rates of control inputs are fed into Wu to penalize the control effort. Therefore, the
system matrix of Wact is derived as

Wact = diag







−5 5
1 0
−5 5


 ,



−20 20
1 0
−20 20








and the weighting function Wu is given as

Wu = diag
{

1, 10,
1
50

,
1

120

}

In the high angle of attack region, the thrust vector is also activated. In order to use the proposed switching
condition, the weighted open-loop LPV plants in the different parameter subspaces must have the same
number of the states. Otherwise, the synthesis conditions on the switching surfaces will not hold. Therefore,
we ignore the dynamics of the throttle, which has the slowest time constant among the three actuators, and
keep the order of Wact as same as that in the low angle of attack region. The related weighting functions
Wact and Wu are given as follows.

Wact = diag







−14.28 14.28

1 0
−14.28 14.28


 ,



−20 20
1 0
−20 20








, Wu = diag
{

1,
1
35

,
1

120
,

1
50

,
1

120

}

The other common weighting functions are chosen as

Wp =
80(s/5 + 1)
s/0.05 + 1

, Wn = diag {0.8, 0.6, 0.1} , Wideal =
0.36

s2 + 1.2s + 0.36

C. Design Results and Nonlinear Simulations

Two LPV controllers corresponding to 20◦ ≤ α ≤ 35◦ and 30◦ ≤ α ≤ 45◦ are designed using the switching
LPV synthesis condition 3 in Theorem 1. As mentioned before, the synthesis condition (13)–(14) for hys-
teresis switching control is nonconvex. To avoid numerical complexity in solving the nonconvex problem, we
enforce the constraint Si(ρ) = Sj(ρ) on the switching surfaces. The resulting synthesis condition then be-
comes convex and is solvable using efficient LMI optimization algorithm. The multiple parameter-dependent
Lyapunov functions at each parameter subset are specified as affine functions of scheduling parameters. That
is, we have

Ri(ρ) = R0
i + ρ1R

1
i + ρ2R

2
i , Si(ρ) = S0

i + ρ1S
1
i + ρ2S

2
i , i = 1, 2

where ρ1 = α, ρ2 = V , and matrices Rk
i , with k = 0, 1, 2 are new optimization variables to be determined.

The performance level γi in each parameter subset is 7.94 and 8.03, respectively. Then the γ value over
the entire parameter set is max {γ1, γ2}, which represents the “worst-case” LPV control performance using
switching LPV control. However, it should be emphasized that the switching LPV synthesis condition is only
solved in its relaxed form. It is possible to achieve better performance when nonconvex boundary conditions
are included.

For comparison, the performance levels of two other cases are calculated: (1) LPV control in [20◦ 45◦];
(2) separate LPV control in [20◦ 35◦] and [30◦ 45◦]. Both cases are conventional LPV control design
problems. In case 1, a single parameter dependent Lyapunov function is used, and the achieved performance
level is 8.00, which is almost the same as the switching control. In case 2, the performance levels are 2.88 and
8.00, respectively. The performance levels of case 2 imply that the flight control in the high angle of attack
region is much more challenging. For switching LPV control, however, there is no big difference between
performance levels of the two subsets. Performance in the low angle of attack region is sacrificed due to
convex synthesis conditions. It remains one of the challenging research topics to find an efficient nonconvex
algorithm or an alternative synthesis condition.

The switched LPV controllers are also compared with the optimal H∞ controllers at seven flight con-
ditions, which are used for deriving the LPV model. The H∞ controllers are synthesized for each flight
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Table 1. Frozen optimal/LPV closed-loop H∞ norm.

Flight condition [α(deg), V (ft/s)] H∞ control Switching LPV control
[21, 200] 0.8745 7.9329
[35, 200] 0.2685/0.2159 7.9453/7.9453
[35, 180] 0.2282/0.1749 7.9488/7.9487
[40, 160] 0.4492 7.9928
[45, 160] 1.2205 8.0287

condition, and their H∞ norm values are compared with the suboptimal control performance achieved by
LPV controllers at specified parameter values. Some of these are provided in table 1. As can be seen from
the table, the performance of switching LPV control is sub-optimal for fixed parameters. The comparison
results for 0.1◦ flight path angle step responses of the fixed parameter H∞ and switching LPV control are
given in figure 5, where the nonlinear model of the aircraft is used for simulation. The solid lines are the
responses using controllers in region 1, the dash-dot lines correspond to the responses using controller in
region 2, and the dashed line is the response of the ideal model. Note that in the overlapped parameter
region, two LPV controllers are available to use. The data indicate that LPV control provides consistent
response characteristics over wide parameter ranges.
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(a) H∞ control
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(b) Hysteresis switching LPV control

Figure 5. Comparison of fixed parameter step response between H∞ control and hysteresis switching LPV
control.

A flight path step input is used to demonstrate performance of the switching control system during
the nonlinear simulation, whereas the angle of attack evolves from the low subregion and enters the high

9 of 11

American Institute of Aeronautics and Astronautics



subregion. The tested flight condition is selected at V = 200 ft/s and α = 29◦. Figure 6 shows the nonlinear
responses of the aircraft model to 2◦ step input of flight path angle. The dashed line in figure 6(a) represents
the flight path angle response of the ideal model, and the solid line represents achieved system response.
Performance over the entire time history is acceptable. Figs. 6(b) and 6(c) show the time history of the
scheduling parameters. It can be observed that the switching occurs around 14.25s, when the angle of attack
is about 35◦. The responses of actuators are shown in Figs. 6(d)-(f). It is noted that the thrust vector is
activated when the aircraft flies over the switching surface α = 35◦. During controller switching, there are
small glitches for the responses of the throttle and the elevator.
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Figure 6. Nonlinear step response with hysteresis switching.

IV. Conclusion

A switching LPV control approach based on multiple parameter-dependent Lyapunov functions is pre-
sented for flight control design. Hysteresis switching logic is used to avoid the possible transient instability
caused by switching among controllers. The proposed technique is used to design a switched control system
that achieves the desired flying qualities when switching between low and high angle of attack regions.

The presented flight control design using switched LPV control approach is a good first step toward
wide angle of attack maneuvering control design. In this research, the case of different actuator dynamics
in different angle of attack regions has been considered. The switching LPV control strategy is capable of
providing guaranteed stability and performance for a large flight envelope. For future research, the design
objective may also be different in low and high angle of attack regions.
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